- Home
- Documents
*Competing orders in the cuprate 1.0 1.5 2.0 2.5 3.0 Regular QPSR Vortex Differential Conductance...*

prev

next

out of 33

View

0Download

0

Embed Size (px)

Eugene Demler (Harvard) Kwon Park

Anatoli Polkovnikov Subir Sachdev

Matthias Vojta (Augsburg) Ying Zhang

Competing orders in the cuprate superconductors

Talk online at http://pantheon.yale.edu/~subir

(Search for “Sachdev” on )

( )† † 0 cos cos 0

Hole-doped cuprates are BCS superconductors w

-wa

ith

ve pairing

spin-single t

x y dc c k k

S

↑ ↓ ≡ ∆ = ∆ −

= ��

kk -k

yk

xk

0 0

2 2

Low ener Superflow

1/ 2 fermion

gy excitat

ic quasiparticles

:

:

ons:

i i

S

e

E

θ

ε

∆ →

==

∆

+ ∆k k k

0

0

BCS theory also predicts that the Fermi surface, with gapless quasiparticles, will reveal itself when 0, either locally or globally at low temperatures. can be suppressed by a strong magnetic fiel

∆ → ∆

d, and near vortices, impurities and interfaces.

Superconductivity in a doped Mott insulator

Hypothesis: cuprate superconductors have low energy excitations associated with additional order parameters

Theory and experiments indicate that the most likely candidates are spin density waves and associated

“charge” order

Competing orders are also revealed when superconductivity is suppressed locally, near impurities or around vortices.

S. Sachdev, Phys. Rev. B 45, 389 (1992); N. Nagaosa and P.A. Lee, Phys. Rev. B 45, 966 (1992);

D.P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang Phys. Rev. Lett. 79, 2871 (1997); K. Park and S. Sachdev Phys. Rev. B 64, 184510 (2001).

Superconductivity can be suppressed globally by a strong magnetic field or large current flow.

Outline I. Experimental introduction

II. Spin density waves (SDW) in LSCO Tuning order and transitions by a magnetic field.

III. Connection with “charge” order – phenomenological theory STM experiments on Bi2Sr2CaCu2O8+δ

IV. Connection with “charge” order – microscopic theory Theories of magnetic transitions predict bond-centered modulation of exchange and pairing energies with even periods---a bond order wave

V. Conclusions

The doped cuprates

2-D CuO2 plane Néel ordered ground state at zero doping

2-D CuO2 plane with finite hole doping

I. Experimental introduction

Phase diagram of the doped cuprates

T

δ

d-wave SC

3D AFM

0

ky

•

kx

π/a

π/a0

Insulator• • • ••••

Superconductor with Tc,min =20 K

•

T = 0 phases of LSCO

δ~0.12-0.140.055 SC+SDW SCNéel SDW

0.020

S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999).

G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997).

Y. S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999).

SDW order parameter for general ordering wavevector

( ) ( ) c.c.iS eα α ⋅= Φ +K rr r

( ) is a field and =(3 / 4, ) Spin density wave is (and not spiral):

α π πΦ complex longitudi nal

r K ie nθα αΦ =

Bond-centered

Site-centered

H

δ~0.120.055 SC+SDW SCNéel SDW

0.020

ky

•

kx

π/a

π/a0

InsulatorSuperconductor with Tc,min =20 K

• •• •

II. Effect of a magnetic field on SDW order with co-existing superconductivity

H

δ

Spin singlet state

SDW

Effect of the Zeeman term: precession of SDW order about the magnetic field

Characteristic field gµBH = ∆, the spin gap 1 Tesla = 0.116 meV

Effect is negligible over experimental field scales

δc

( )~ zcH νδ δ−

2

Elastic scattering intensity

( ) (0) HI H I a J

� �= + � � � �

Dominant effect: uniformuniform softening of spin excitations by superflow kinetic energy

2 2

2

Spatially averaged superflow kinetic energy 3 ln cs

c

HHv H H

� �

1 sv r �

r

( ) 2 2

The presence of the field replaces by 3 ln ceff

c

HHH C H H

δ

δ δ � �= − � � � �

E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Competing order is enhanced in a

“halo” around each vortex

• Theory should account for dynamic quantum spin fluctuations

• All effects are ~ H2 except those associated with H induced superflow.

• Can treat SC order in a static Ginzburg-Landau theory

( ) 1/ 2 22 2 2 22 2 21 2

0 2 2

T

b r g gd r d c sα τ α α α ατ

��= ∇ Φ + ∂ Φ + Φ + Φ + Φ �� �� � S

2 22

2c d rd ατ ψ

� �= Φ� �� �� S v

( ) 4

222

2GL r F d r iA

ψ ψ ψ

� � = − + + ∇ −� �

� �� � �

( ) ( ) ( )

( )

,

ln 0

GL b cFZ r D r e

Z r r

ψ τ

δ ψ δψ

− − −= Φ� �� � � �� � =

� S S

(extreme Type II superconductivity)Effect of magnetic field on SDW+SC to SC transition

Infinite diamagnetic susceptibility of non-critical superconductivity leads to a strong effect.

Main results

E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

( )( ) ( )~

ln 1/ c

c

H δ δ δ δ −

−

2

2

Elastic scattering intensity 3( ) (0) ln c

c

HHI H I a H H

� �= + � � � �

( ) ( ) 2 2

1 exciton energy 30 ln c

c

S HHH b

H H ε ε

=

� �= − � � � �

T=0

δδc

2 4

B. Khaykovich, Y. S. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner,

Elas

and

tic neutron scatterin

R.J. Birgeneau, cond-

g off La C

mat/01

uO

12505.

y+

( ) ( )

2

2

2

Solid line --- fit to :

is the only fitting parameter Best fit value - = 2.4 with

3.01 l

= 6

n

0 T

0

c

c

c

I H HH H

a

a I H

a H

� �= + � � � �

Neutron scattering measurements of static spin correlations of the superconductor+spin-density-wave (SC+SDW) in a magnetic field

2- 4Neutron scattering of La Sr CuO at =0.1x x x

B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002).

2

2

Solid line - fit ( ) nto : l c c

HHI H a H H

� �= � � � �

Spin density wave order parameter for general ordering wavevector ( ) ( ) c.c.iS eα α ⋅= Φ +K rr r

( ) is a field and =(3 / 4, ) Spin density wave is (and not spiral):

α π πΦ complex longitudi nal

r K

III. Connections with “charge” order – phenomenological theory

ie nθα αΦ =

Bond-centered

Site-centered

( ) ( ) ( )2 2 2 c.c.iS eα α α

δρ ⋅∝ = Φ +� K rr r r

J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989). H. Schulz, J. de Physique 50, 2833 (1989). K. Machida, Physica 158C, 192 (1989). O. Zachar, S. A. Kivelson, and V. J. Emery, Phys. Rev. B 57, 1422 (1998).

A longitudinal spin density wave necessarily has an accompanying modulation in the site charge densities, exchange and pairing

energy per link etc. at half the wavelength of the SDW

“Charge” order: periodic modulation in local observables invariant under spin rotations and time-reversal.

Order parmeter ( )2~ α α

Φ� r

Prediction: Charge order should be pinned in halo around vortex core

K. Park and S. Sachdev Phys. Rev. B 64, 184510 (2001). E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, 067202 (2001).

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan,

H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

-120 -80 -40 0 40 80 120 0.0

0.5

1.0

1.5

2.0

2.5

3.0

Regular QPSR Vortex

Di ffe

re nti

al Co

nd uc

tan ce

(n S)

Sample Bias (mV)

Local density of states

1Å spatial resolution image of integrated

LDOS of Bi2Sr2CaCu2O8+δ ( 1meV to 12 meV)

at B=5 Tesla.

S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

100Å

b 7 pA

0 pA

Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integ